

Zyzzyva: Speculative Byzantine Fault
Tolerance

Océan Gillaux

DISTRIBUTED SYSTEM MID110

University of Stavanger April 2010

Page 2 of 11
Océan Gillaux Zyzzyva

This paper is a summary about Zyzzyva protocol [1]. This protocol implements the design of Byzantine
fault Tolerance (BFT). Before starting and explaining Zyzzyva, a short presentation of Byzantine [2,3].

Requirements
Why to use fault tolerance? Now especially with Internet, the users want access 24/7 for the data, the
website, email, … But unfortunately no server is perfect. We must have system for managing if one or
more server does not work or is faulty. The solution is to add more servers, but you need to check the
integrity of the server response. For example if there are some errors in the data (database, file system
corrupted) or worse the server is corrupted by adversary. We need system that manages the problem
with server but also that checks if the response received by the client is correct.

Zyzzyva transforms services into high-performance and reliable services. The service is replicated to
tolerate failure. Application has to see one centralized service (Application “sends” request to zyzzyva
protocol, it does not know what happens after).

Byzantine fault tolerance or Byzantine General’s problem
The name byzantine refers to the problem encountered by the generals of the Byzantine Empire Army
[4]. The generals had to decide who attacked, but they could communicate only by messenger and
eventually there were traitors among the generals.

In this example, the captain 2 is the liar. How the Captain 1 can choose the good response?

General

Captain 2Captain 1

Client Server

Request

Reply

Request

Replies

Zyzzyva

Page 3 of 11
Océan Gillaux Zyzzyva

If you replace the captain 1 by the client and the general and the Captain 2 by the server, you have the
Byzantine fault tolerance problem in computer science. For this example 2 servers with one liar have not
solution, we need more server, but it’s not the subject of this paper. To tolerate m traitorous generals it
is required 2m + 1 loyal generals[4].

Security
We admit that the adversary cannot break cryptographic techniques like collision-resistant hashes,
encryption, … Zyzzyva uses the concept of public/private key.

Introduction
Different protocols implement this solution, the most famous is Practical Byzantine Fault Tolerance
(PBFT)[3]. But these protocols need a long phase of agreement consensus. It is not easy to choose the
correct implementation because it depends on your architecture and requirements: High request
contention, low latency, Replication cost, … Zyzzyva tries to optimize this phase and simplify the
structure of BFT. The main idea in Zyzzyva to reduce the consensus phase is speculation.

Traditional BFT state machine replication:

The replicas are to agree on the execution order before answering the request. This system has a cost:
Many messages and time for agreement phase.

Client

Primary

Replica

Replica

Replica

Request

Reply

Agreement

Execution

Page 4 of 11
Océan Gillaux Zyzzyva

Zyzzyva state machine replication:

Replicas execute the request without agreement.

The replicas do not need to know if the system is consistent, only the client verifies if the reply is stable
before committing to the application. If is not stable, the client commit message to ask the primary and
replicas to converge on a good view.

In the replication services fault tolerance, “f” represents the number of tolerating fault.

Zyzzyva Protocol
The Zyzzyva protocol is based on three sub-protocols:

• Agreement protocol (Orders the execution)
• View-change protocol (Manages the change of the view)
• Checkpoint protocol (Manages the state stored by the replicas)

Client

Primary

Replica

Replica

Replica

Request

Reply

Speculative execution

Page 5 of 11
Océan Gillaux Zyzzyva

Agreement
How the clients check stable reply? The client uses the history included in the message.

The request history contains the order of the request executed. All the replies contain application
response and request history. History: <Rik,Hik> Reply from a replica i after executing request k. This part
is the main idea of Zyzzyva protocol: speculation.

Execution with 3f+1:

1. Client sends a request to the primary Rc
2. Primary receive request and forwards ordered request to replicas <Rc, k>
3. Replica receives ordered request, speculatively executes it and responds to the client <R1k,

H1k> … <R4k, H4k>
4. Client receives matching responses, i.e. all the application response are all equal R1k=R2k=??, all

the request histories are equal H1k=H2k, and the client received 3f+1 responses. If everything is
ok, zyzzyva completes the request to the application else see next part.

Client

Primary

Replica

Replica

Replica

Request: Rc

R1k=R2k= ? H1k=H2k=?

Speculative execution

<Rc,k>

Replies: <R1k, H1k>
… <R4k, H4k>

Page 6 of 11
Océan Gillaux Zyzzyva

One replica faulty: 2f+1 replies:

1. Client sends a request to the primary Rc
2. Primary receives request and forwards ordered request to replicas <Rc, k>
3. Replica receives ordered request, speculatively executes it and responds to the client <R1k,

H1k> … <R3k, H3k>
4. Client receives matching responses, but the client receives only 2f+1 response. The client sends

a commit message with different information, list of replica has responded.
5. The replica receives commit from client and send a Local-commit to client
6. The client completes the request.

Client

Primary

Replica

Replica

Replica

Request: Rc

2f+1

Speculative execution

<Rc,k>

 <R1k, H1k>…

Commit

C:<H1k,..,H3k>

2f+1 Done

Page 7 of 11
Océan Gillaux Zyzzyva

The client receives less 2f+1 response:

1. Client sends a request to the primary Rc
2. Primary receives request and forwards ordered request to replicas <Rc, k>
3. Replica receives ordered request, speculatively executes it and responds to the client <R1k,

H1k> … <R2k, H2k>
4. Client receives matching responses, but the client receives less than 2f+1 responses. The client

sends a request Rc to all replicas (the client needs more than two replies before sending to
application)

5. The replica receives Rc from client, if there is some inconsistency, the replica initiates a view
change

Node State and Checkpoint protocol
Each replica stores histories of execution request and certificates, for maintaining consistent history and
optimizing it, zyzzyva uses checkpoint protocol. Each CP_INTERVAL, replicas try to create checkpoint and
send after creating it to all replica a CHECKPOINT message. Replica maintains only one checkpoint, we
did not need to store everything, only the last information could be necessary.

View Change
The view change manages the new primary election AND guarantees the history has not changed for the
correct request for the correct client.

The replica i having suspicions about the primary, does not stop working in the view but ask the other
replica to vote “no confidence” in the primary, if f+1 replicas say yes, the replica i sends VIEW-CHANGE
message to all replicas. The correct replica that receiving this message, joins the mutiny. With the

Client

Primary

Replica

Replica

Replica

Request: Rc

<2f+1

Speculative execution

<Rc,k>

 <R1k, H1k>… Rc

Page 8 of 11
Océan Gillaux Zyzzyva

history and the commit from client, the new primary can know the correct history with checkpoint
protocol and sends to the other replica the right history.

Client
We can see that the client role is important in Zyzzyva. There is an interesting question: Can a faulty
client block zyzzyva?

The faulty client did not depose the commit certificate. This cannot block the other clients and they send
commit certificate. Correct client ensure system progress because the system uses cumulative history of
request and the correct client commit all previous requests. Faulty client cannot block the others. It can
only affect its own process.

The faulty client cannot block the others, but could it compromise the safety by committing inconsistent
history? The protocol uses encryption with private/public key, the faulty client cannot forge a bad
history. Two valid certificates cannot have different prefixes, the encryption protect this.

Optimization

Replacing signatures with MACs
Many implementations of BFT use cryptographic operations to protect message, the main optimization
used to reduce this is to replace signature by MACs.

Separating agreement from execution
For optimizing application, state is replicated only 2f+1 replica, the other replicas are used like
witnesses.

Request Batching
This technique is not specific to zyzzyva, a lot of systems use batching to optimize. For example if you
see 10 times google.com in the day, your navigator asks once time pictures from google.com and after
uses cache.

Zyzzyva5
We saw, if we use 3f+1 replica and the client receives 2f+1 responses (one server faulty), the client
needs to send a commit before completing the request to application. Zyzzyva5 does not use 3f+1
replica but 5f+1 replicas. In this system if one server does not work, the client receive 4f+1 responses,
there is no problem, and it can directly complete the request to the application.

Page 9 of 11
Océan Gillaux Zyzzyva

Zyzzyva5 with 5f+1 completes in a single phase with f faulty replicas.

Client

Primary

Replica

Replica

Replica

Request: Rc

4f+1

Speculative execution

<Rc,k>

 <R1k, H1k>…

Donne

Replica

Replica

Client

Primary

Replica

Replica

Replica

Request: Rc

2f+1

Speculative execution

<Rc,k>

 <R1k, H1k>…

Commit

Page 10 of 11
Océan Gillaux Zyzzyva

Evaluation
This evaluation uses benchmark (client sends 4KB request and receives null response, the client sends
null request and receives 4KB response). We can know the number of operation over the number of
clients.

B represents the size of the Batch. We can see Zyzzyva is the most performing BFT.

But it is not only the unique evaluation; we would like to know the latency between the request and the
response.

0/0, 0/0(r/o) are different configuration of request and response.

Page 11 of 11
Océan Gillaux Zyzzyva

Conclusion
In exploiting speculation, Zyzzyva has a good performance over existing BFT services. Zyzzyva
approaches the theoretical lower bounds for any BFT.

References
[1] Zyzzyva: Speculative Byzantine Fault Tolerance, Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong Dept. of Computer Sciences University of Texas at Austin, 2007

[2] Byzantine Fault Tolerance Wikipedia, http://en.wikipedia.org/wiki/Byzantine_fault_tolerance

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc. OSDI, February 1999.

[4] In French, Algorithme des Généraux Byzantins Yann CEZARD, DESS TNI - Université de Montpellier II,
décembre 2001 http://www.lirmm.fr/~ajm/Cours/01-02/DESS_TNI/TER21/

http://en.wikipedia.org/wiki/Byzantine_fault_tolerance�
http://www.lirmm.fr/~ajm/Cours/01-02/DESS_TNI/TER21/�

	Requirements
	Byzantine fault tolerance or Byzantine General’s problem
	Security

	Introduction
	Zyzzyva Protocol
	Agreement
	Execution with 3f+1:
	One replica faulty: 2f+1 replies:
	The client receives less 2f+1 response:

	Node State and Checkpoint protocol
	View Change

	Client
	Optimization
	Replacing signatures with MACs
	Separating agreement from execution
	Request Batching
	Zyzzyva5

	Evaluation
	Conclusion
	References

